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Identification of continuous, spatiotemporal systems
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We present a method for the identification of continuous, spatiotemporal dynamics from experimental data.
We use a model in the form of a partial differential equation and formulate an optimization problem for its
estimation from data. The solution is found as a multivariate nonlinear regression problem using the alternating
conditional expectation algorithm. The procedure is successfully applied to data, obtained by simulation of the
Swift-Hohenberg equation. There are no restrictions on the dimensionality of the investigated system, allowing
for the analysis of high-dimensional chaotic as well as transient dynamics. The demands on the experimental
data are discussed as well as the sensitivity of the method towards [81€63-651X98)10603-1

PACS numbgs): 05.45+b, 07.05.Kf

The unstable dynamics observed in spatially extendeq|-dimensional function ofi(x,t), and its spatial and tempo-
systems attracted huge experimental and theoretical researﬁg derivatives. witht and x the temporal and spatial vari-
activity in the last decadegsee[1,2] and references thergin ables respectively
Progress has been achieved by describing the dynamics in To,simplify the analysis and the representation, we only

Ihg V'C'n'tyt.Of blfurcaétllons ;V'th thetr?elp of ulnlv_?rsalf i?p“f consider systems with a single componerand at most two
ule gquaéo?s,p\\/gds_t_y re” uctlrr:g N con;phem y o te T' patial dimensions. We note that the following consider-
volved models. tuonally, the research nas concentraledy; g are valid, in principle, also for multicomponent sys-

on 'ghe classification of the_ obse_rveq mstabﬂme; and the re&—ems and higher dimensions in space.
sulting patterns, and the investigation of scaling laws an

intermitt ffecté1] F ti tigat h del In the following, we discuss the procedure for estimating
Intermittency etiec $1]. For most investigations th€ models F\PDE of the forn(1) from experimental data. Therefore, we
for spatiotemporal systems arise from mainly theoretical

considerations and their validity is affirmed by the compari-distinguish between the solutiar(x,t)and the data (x,t).

son with experimental measurements. Here we address tff" the sake of simplicity, we denote both the continuous
problem of finding a model, which describes the dynamics ofPace-time variables of the model field and the discrete
an observed system, directly from experimental data. Foppace-time variables of the data by the same symbatit.
systems that exhibit temporal low-dimensional chaotic mo-Considering the data as random variables, we act on a
tion this was accomplished with the help of nonlinear mapgProbability space and denote all entities estimated from the
[3]. Other general methods rely on some sort of mode expardata by a hat.

sion and were successfully applied]. A different approach Since one can get only an estimate of the true funcfion
consists in a nonparametric model identification as proposeffom the datav, all one can achieve is to estimate the ana-
for systems with a time delay feedbaldk6]. logue of Eq.(1),

In this paper we extend that approach to the identification
of the underlying evolution equation of spatially extended R R
systems. First we formulate an optimization problem for FIV,d,v(xt)]=0, 2
finding a model equation from the data. Then we rewrite the

equations in the form of a multivariate nonlinear regressionnere F is the estimate ofF and the derivatives have been
problem. As a last step, we use a different kind of numerica}emaced by estimates computed from the data

algorithm for solving the problem. Our approach does not To obtain F f late f Ea(1) the followi
include any parameter dependencies; rather, those are deliv- 10 obtain -, we orr.nuae rom Eq(1) the following
ered as a byproduct. We discuss the identification of homo2Ptimization problen7]:
geneous and autonomous partial differential equations

(PDE’s), but emphasize that the ideas are quite general and inf || A =e?, 3)
can be applied to other problems such as finite-difference F

equations, coupled-map lattices, and integrodifferential equa-

tions. where the norm has to be specified according to the respec-
We assume the dynamics of the system under considetive problem. The optimization lies in varying until e?
ation to be governed by a PDE of the form converges to the minimum.
The functionF is defined as a function of operators, e.g.,
- . V2, 4,, id, ... . We denote the set of constituent operators
FLV,d,u(x,n]=0, @) by{O}i_1  «. Note that in our definition of the differen-

whereu is the field variable withN components,F is an  included. Since we consider a nonlinear problem, it is useful
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to split the functionF into subfunctionsp;, which have as
argumentsOju, e.g., ®(dyl)=(dgu)® or ®( idu)=u¥b.
These®; are elements of some class of functidgswhich

has to be specified according to the problem. Thus, the final
representation of Eq1) reads

K
f=20 ®,(O;u)=0. (4)

We want to determine the constitued®su and the functions

@, of Ffrom a data set. Therefore, we estimate at fir§ku

from the data by finite differencing or alternative schemes.
Especially in the presence of noise, Fourier methods or ker-
nel estimation could be helpful. The result consistskof FIG. 1. The data sample(x,y,t,) for the central time point,

random variableaf)izf?iu. If the underlying PDE is linear, encgdeq in grfiy valudsmall values dark All quantities are plot-
i.e., the functionF a multilinear one, we could solve the t€d in dimensionless units.

problem with linear regression methods. Second, to obtain a

solution for the nonlinear problem, we solve

minimization of the expectation valué) is equivalent to the
calculation of themaximal correlation¥ [10]. Instead ofe?
=e? (55  we use the maximal correlation as a measure of the quality of
the result: ¥ €[0,1] equals 1 for perfect estimation, the
. smaller it is the worse the estimation. The ACE algorithm
in varying the functionsb; . The result are the estimatés.  achieves the maximization by iteratively transforming each
Up 10 now, we anticipated the number and type of operator put @i by suitable, generallynonlinear, transformations

O, . For unknown systems, which are the ones we treat, i . : ; . L
would be necessary to extend the number of operators uch as to yield &near relationship between the output—the

infinity. In practice one has to select a finite number. ReduneW random variable®;(0;).

dant terms then delivab;~0 as result. It is importantto find ~ As a first example, we analyze daigx,t) from the nu-

a reasonable initial guess for the operat@ksof Eq. (4). If ~ merical integration of the Swift-Hohenberg equatigit].

there already exists some description for the system in ahe model is of the form

special state, one starts with the operators that appear in the

known equations and tries to determine additional terms that

may appear when 'Igavmg 'that state. This situation appears, AU=[r — (V24 K2)2]u—uP= (r — k%) u— U

e.g., hear some critical points, where one can start with al-

ree_ldy derived amplitude equations. If no kno_vvn descripti_on — 2Kyt Iy )U— (Tt dyyyyt 20xy)U. (7)

exists, one should extract as much information as possible

from other clues, e.g., symmetries, and then follow the usual

schemes for deriving amplitude equatidrig, where espe-

cially product terms are included in higher expansion terms
In the case of data analysis, the optimization prob(&jn

K
inf
deS

@(&)‘
1

The global dynamics of the model can be derived from a
potential, such that the asymptotic time dependence is trivial

b itiol i : blem that 2]. Therefore, we analyze a transient state to have a suffi-
ecomes a mutiple honlinear regression problem that can be . \ariation in the time derivative. For the identification
solved using the alternating conditional expectation algo-

rithm (ACE) [8]. It has already been successfully applied inprocedure we use dgta produced by an e>_<p|ic?t EuI(_ar integra-
related fields of data analysf§,9]. Since the algorithm is tion scheme with a time step of 16, a spatial discretization

based on a statistical description, the norm used in E3)s. O_f AXZA_YZO'ZS’ and period@c boundgry_conditi_ons. AS ini-
and (5) is the L, norm. Using this algorithm, the functions tial conditions we choose uniformly distributed independent

®, of Eq. (4) are seen as so-callaptimal transformations @ndom numbers from the intervil-10,1(. The param-
[8], which are defined to solve regression problems of theéters are =0.1 andk=1.
form The differential operators are estimated by symmetric dif-
ferencing schemes, e.g.atu(g,t)=[v(>2,t+At)—v()Z,t
R K 1! —At)]/2At. Thus, to estimate the time derivatives of first
EI (I)O(OO)—Z CIDi((’)i)} ] =min. (6) order in each spatial data point, we need three consecutive
=1 “pictures” of data. The field size is 100100 points, i.e., the

The @, are varied in the spac of the Borel-measurable data seb(x,t) contains 3<10" values. The data for the cen-
functions with the additional requirement of zero expectairal time point are shown in Fig. 1. In the following we can
tion, E[®;]=0 (i=0,... K), and E[Cbﬁ]=1. The conver- drop without ambiguity the hat.
gence of the ACE algorithm in the case of discrete samples To identify the unknown system, we use an ansatz with
rather than random variables has also been provfgliThe  nonmixed termglike d,v) up to fourth order in the spatial
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FIG. 3. The nonlinear term of the Swift-Hohenberg equation
(@) The estimated and the exact nonlinearity.9u—u®. (b) The
same with noise, as explained in the text. Units are dimensionless.

FIG. 2. Four exemplary estimates for the optimal transforma-

tions (@g, ®,, s, @) are shown. The linear occurrence 4

and d,,u is clearly recovered byb, and ®,, respectively. The

redundant terms,,u and ud,u vanish approximately. The dotted

lines mark the interval on the abscissa in which 98% of the data o .

points are located. Due to a very nonhomogeneous distribution dhe errors of these values, it is advisable to check the range

the data the optimal transformations outside the marked interva®f validity of the reconstructed model by integration and

cannot be estimated reliably. The results for the optimal transforcomparison with the dynamics. In Fig. 3 the nonlinearity

mations not shown here deliver estimates of equal quality. As in—0.9u—u? of Eq. (7) is compared explicitly with the esti-

Fig. 1, units are dimensionless. mate, taking now an ansatz with only the nonvanishing terms
of the above result. Inside a range of 98% of the data values
this term can be estimated with high accuracy.

derivatives. To show how to handle mixed terms we addi- From a practical point of view, it is essential to discuss

tionally include the termed,v, vdyv, dyvdyv: the stability of the identification method against noise. The

effect of noise is to increase the errors of the estimates for

Do(dw) =P 1(v) + Do Ixv) + P3(dyv) + Dy ) the partial differential operators applied to the data, and
therefore also the value of the error estimete The identi-

T P5(dyyv) + Pe(dyyv) + P7(Ixxv) + - fication detects the remaining correlations of the vector field

and its derivatives via the functiafi. In general, if the vec-
Pl dyy) + Pual oot )+ -+ Pasldyyyp) el and its derivatives are stil strongly correlated for a
+®1(vdy0) + PrAvdyw) + Pg(dvdyw), (8)  reasonable low noise level of a noisy system, the minimum
according to Eq(5) should still be detectable.
with the nine redundant terni,(d,v), ®3(3,v), P5(dxyv), To examirje the stability against noise, we disturb each
D7), Peldxxyw),  Poldyyyw),  Pigdyyyw),  data pointv(x,t) with additive Gaussian white noise with a
D1 (dxxxp)r Pra(dxyypw), Pre(vdxv), P1Avdyw), and  standard deviation of 0.5% of the data standard deviation.
®,g(dwdyv). We choose this ansatz as a compromise beThe estimates of the partial derivatives are disturbed severely
tween generality and computational effort. Comparing Eqdue to error propagation. In spite of this, using again(Bg.
(7) with Eq. (8), one expects, in particular, the following for the overall shape of all functions can still be recovered sat-
the solution of Eq(6): Up to an arbitrary common factob isfactorily, while being distortedFig. 3). The maximal cor-
should be the identityp; should be a polynomial of third relation has decreased to 0.926.
order, and foli=4,6,11,13,15 the&, should be linear func- Two other systems, which were analyzed with similar
tions «;; O, . All other estimates should vanish. Furthermore,success as the example above, &t¢ the Kuramoto-
we expect for the slopes of the linear functions, after divisionSivashinsky equatiofin the form given in Ref[2]) in the
by the slope of the left-hand side to remove the arbitranfully chaotic regime and2) a reaction-diffusion system with
common factorg,= ag= a13= — 2, a1= as= — 1. two component$12], where the nonlinearity in the inhibitor
Performing the ACE algorithm, we find a maximal corre- dynamics is a nonanalytic function. We reconstructed that
lation of 0.9993 and optimal transformations as shown infunction with high accuracy for different states, such as
Fig. 2. All functions approximate well the expected shapesingle rotating spiral and spiral-defect chaos.
and the terms that were expected to vanish are indeed very Summarizing our experiences, we find the following data
small compared to the other ones. Note that this does naequirements(l) In order to identify a system withN com-
mean that the values for the redundant terms are vanishingonents it is sufficient to measul independent variables.
themselves but that these are independent of all the othéR) The sampling of the vector fields in space as well as in
terms involved. Comparison of the slope of the linear func-time has to be appropriate to properly estimate the partial
tions yields the possibility of estimating parameters; we ob-derivatives with respect to time and spa(®.In the preced-
tain ay=ag=—1.9, a13= —2.0, anda;= a15= —1.0. The ing example we analyzed data at one time point but for an
slopes of the terms that are expected to vanish are all smallextended region in space. In other situations it may be useful
than 0.03 in absolute value. Since it is difficult to estimateto perform the analysis at a single spatial point but for a



57 IDENTIFICATION OF CONTINUOUS, ... 2823

longer interval in time, or even a combination of bothproce-ments apply equally well, with some minor modifications,
dures. However, as the example shows, even a small amoufar those systems.

of data can be sufficient4) Since the reconstructed func- In conclusion, we presented a method for the identifica-
tions can only be determined at points that are attained by thgon of spatiotemporal systems by numerical reconstruction
data and the estimates for the differential operators, the daigf the PDE which describes the system. The identification
have to show a sufficient variability in space and tir®.  procedure consists in solving an optimization problem which
The inference from the data to a PDE is often not uniqueresylts in a nonlinear regression problem. Using the ACE
But within the errors of the algorithm, our method reason-5|goyithm, we showed that this task can indeed be solved in
ably reconstructs the dynamics on the trajectory given by thg,e case of numerical examples. We consider the method a

data.(6) We believe that due to the statistical nature of the,sqf| 10| for the analysis of spatiotemporal systems and
method a higher noise level can typically be compensated b(¥xpect it to find a large variety of applications. The limits of

a larger data set. . . .
We would like to stress the fact that the procedure pre_th|s method and the requirements on the data have been dis

sented above is essentially independent of the part of oha cussed. Future work will concentrate on an extension of the
space the system moves 03;1 and F'Ehe boundar aﬁd initiaFI)con- E algorithm to the solution of multicomponent problems,
Pe y ; ary and on the application to real data. Extensions to more gen-
ditions. Thus we do not require the dynamics to be close tg :
o o eral systems are envisaged.
or away from an attractor. This kind of analysis is thus ap-
plicable in the case of high-dimensional chaotic motion, as We acknowledge helpful discussions with D. Escande, J.
exhibited by nonlinear spatially extended systems, as well a&ollub, H. Kantz, J. Kurths, J. Parisi, A. Pikovsky, L. Pis-
transient motion. We did not discuss nonhomogeneous amen, and M. Zaks, and financial support by the Max-Planck-

nonautonomous evolution laws, but, in principle, the argu-Gesellschatft.
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