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Identification of continuous, spatiotemporal systems
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We present a method for the identification of continuous, spatiotemporal dynamics from experimental data.
We use a model in the form of a partial differential equation and formulate an optimization problem for its
estimation from data. The solution is found as a multivariate nonlinear regression problem using the alternating
conditional expectation algorithm. The procedure is successfully applied to data, obtained by simulation of the
Swift-Hohenberg equation. There are no restrictions on the dimensionality of the investigated system, allowing
for the analysis of high-dimensional chaotic as well as transient dynamics. The demands on the experimental
data are discussed as well as the sensitivity of the method towards noise.@S1063-651X~98!10603-7#

PACS number~s!: 05.45.1b, 07.05.Kf
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The unstable dynamics observed in spatially exten
systems attracted huge experimental and theoretical rese
activity in the last decades~see@1,2# and references therein!.
Progress has been achieved by describing the dynamic
the vicinity of bifurcations with the help of universal ampl
tude equations, vastly reducing the complexity of the
volved models. Additionally, the research has concentra
on the classification of the observed instabilities and the
sulting patterns, and the investigation of scaling laws a
intermittency effects@1#. For most investigations the mode
for spatiotemporal systems arise from mainly theoreti
considerations and their validity is affirmed by the compa
son with experimental measurements. Here we address
problem of finding a model, which describes the dynamics
an observed system, directly from experimental data.
systems that exhibit temporal low-dimensional chaotic m
tion this was accomplished with the help of nonlinear ma
@3#. Other general methods rely on some sort of mode exp
sion and were successfully applied@4#. A different approach
consists in a nonparametric model identification as propo
for systems with a time delay feedback@5,6#.

In this paper we extend that approach to the identificat
of the underlying evolution equation of spatially extend
systems. First we formulate an optimization problem
finding a model equation from the data. Then we rewrite
equations in the form of a multivariate nonlinear regress
problem. As a last step, we use a different kind of numer
algorithm for solving the problem. Our approach does
include any parameter dependencies; rather, those are d
ered as a byproduct. We discuss the identification of hom
geneous and autonomous partial differential equati
~PDE’s!, but emphasize that the ideas are quite general
can be applied to other problems such as finite-differe
equations, coupled-map lattices, and integrodifferential eq
tions.

We assume the dynamics of the system under consi
ation to be governed by a PDE of the form

F @,W ,] t ,uW ~xW ,t !#50, ~1!

where uW is the field variable withN components,F is an
571063-651X/98/57~3!/2820~4!/$15.00
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N-dimensional function ofuW (xW ,t), and its spatial and tempo
ral derivatives, witht and xW the temporal and spatial vari
ables, respectively.

To simplify the analysis and the representation, we o
consider systems with a single componentu and at most two
spatial dimensions. We note that the following consid
ations are valid, in principle, also for multicomponent sy
tems and higher dimensions in space.

In the following, we discuss the procedure for estimati
a PDE of the form~1! from experimental data. Therefore, w
distinguish between the solutionu(xW ,t)and the datav(xW ,t).
For the sake of simplicity, we denote both the continuo
space-time variables of the model field and the discr
space-time variables of the data by the same symbolsxW andt.
Considering the datav as random variables, we act on
probability space and denote all entities estimated from
data by a hat̂ .

Since one can get only an estimate of the true functionF
from the datav, all one can achieve is to estimate the an
logue of Eq.~1!,

F̂ @,̂,]̂ t,v~xW ,t !#50, ~2!

whereF̂ is the estimate ofF and the derivatives have bee
replaced by estimates computed from the datav.

To obtain F̂, we formulate from Eq.~1! the following
optimization problem@7#:

inf
F

iFi5e2, ~3!

where the norm has to be specified according to the res
tive problem. The optimization lies in varyingF until e2

converges to the minimum.
The functionF is defined as a function of operators, e.

¹2, ] t , id, . . . . We denote the set of constituent operat
by $Oi% i 51, . . . ,K . Note that in our definition of the differen
tial operatorsOi , any product terms likeu2]xx ,] t]x are also
included. Since we consider a nonlinear problem, it is use
2820 © 1998 The American Physical Society
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57 2821IDENTIFICATION OF CONTINUOUS, . . .
to split the functionF into subfunctionsF i , which have as
argumentsOiu, e.g., F(]xxu)5(]xxu)a or F( idu)5ub.
TheseF i are elements of some class of functionsS, which
has to be specified according to the problem. Thus, the fi
representation of Eq.~1! reads

F5(
i 50

K

F i~Oiu!50. ~4!

We want to determine the constituentsOiu and the functions
F i of F from a data setv. Therefore, we estimate at firstOiu
from the data by finite differencing or alternative schem
Especially in the presence of noise, Fourier methods or
nel estimation could be helpful. The result consists ofK

random variablesÔi[Ôiu. If the underlying PDE is linear
i.e., the functionF a multilinear one, we could solve th
problem with linear regression methods. Second, to obta
solution for the nonlinear problem, we solve

inf
FPS

I(
i 51

K

F i~Ôi !I5e2 ~5!

in varying the functionsF i . The result are the estimatesF̂ i .
Up to now, we anticipated the number and type of opera
Oi . For unknown systems, which are the ones we trea
would be necessary to extend the number of operatorsK to
infinity. In practice one has to select a finite number. Red

dant terms then deliverF̂ i'0 as result. It is important to find
a reasonable initial guess for the operatorsOi of Eq. ~4!. If
there already exists some description for the system i
special state, one starts with the operators that appear in
known equations and tries to determine additional terms
may appear when leaving that state. This situation appe
e.g., near some critical points, where one can start with
ready derived amplitude equations. If no known descript
exists, one should extract as much information as poss
from other clues, e.g., symmetries, and then follow the us
schemes for deriving amplitude equations@1#, where espe-
cially product terms are included in higher expansion term

In the case of data analysis, the optimization problem~5!
becomes a multiple nonlinear regression problem that ca
solved using the alternating conditional expectation al
rithm ~ACE! @8#. It has already been successfully applied
related fields of data analysis@6,9#. Since the algorithm is
based on a statistical description, the norm used in Eqs~3!
and ~5! is the L2 norm. Using this algorithm, the function
F i of Eq. ~4! are seen as so-calledoptimal transformations
@8#, which are defined to solve regression problems of
form

EH FF0~Ô0!2(
i 51

K

F i~Ôi !G2J !

5min. ~6!

The F i are varied in the spaceS of the Borel-measurable
functions with the additional requirement of zero expec
tion, E@F i #50 (i 50, . . . ,K), andE@F0

2#51. The conver-
gence of the ACE algorithm in the case of discrete samp
rather than random variables has also been proved in@8#. The
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minimization of the expectation value~6! is equivalent to the
calculation of themaximal correlationC @10#. Instead ofe2

we use the maximal correlation as a measure of the qualit
the result: CP@0,1# equals 1 for perfect estimation, th
smaller it is the worse the estimation. The ACE algorith
achieves the maximization by iteratively transforming ea

input Ôi by suitable, generallynonlinear, transformations
such as to yield alinear relationship between the output—th

new random variablesF i(Ôi).

As a first example, we analyze datav(xW ,t) from the nu-
merical integration of the Swift-Hohenberg equation@11#.
The model is of the form

] tu5@r 2~¹21k2!2#u2u35~r 2k4!u2u3

22k2~]xx1]yy!u2~]xxxx1]yyyy12]xxyy!u. ~7!

The global dynamics of the model can be derived from
potential, such that the asymptotic time dependence is tri
@2#. Therefore, we analyze a transient state to have a s
cient variation in the time derivative. For the identificatio
procedure we use data produced by an explicit Euler inte
tion scheme with a time step of 1024, a spatial discretization
of Dx5Dy50.25, and periodic boundary conditions. As in
tial conditions we choose uniformly distributed independe
random numbers from the interval@210,10#. The param-
eters arer 50.1 andk51.

The differential operators are estimated by symmetric d

ferencing schemes, e.g.,]̂ tv(xW ,t)5@v(xW ,t1Dt)2v(xW ,t
2Dt)#/2Dt. Thus, to estimate the time derivatives of fir
order in each spatial data point, we need three consecu
‘‘pictures’’ of data. The field size is 1003100 points, i.e., the

data setv(xW ,t) contains 33104 values. The data for the cen
tral time point are shown in Fig. 1. In the following we ca

drop without ambiguity the hat̂.
To identify the unknown system, we use an ansatz w

nonmixed terms~like ]xv) up to fourth order in the spatia

FIG. 1. The data samplev(x,y,t0) for the central time pointt0

encoded in gray values~small values dark!. All quantities are plot-
ted in dimensionless units.
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2822 57H. VOSS, M. J. BÜNNER, AND M. ABEL
derivatives. To show how to handle mixed terms we ad
tionally include the termsv]xv, v]yv, ]xv]yv:

F0~] tv !5F1~v !1F2~]xv !1F3~]yv !1F4~]xxv !

1F5~]xyv !1F6~]yyv !1F7~]xxxv !1•••

1F10~]yyyv !1F11~]xxxxv !1•••1F15~]yyyyv !

1F16~v]xv !1F17~v]yv !1F18~]xv]yv !, ~8!

with the nine redundant termsF2(]xv), F3(]yv), F5(]xyv),
F7(]xxxv), F8(]xxyv), F9(]xyyv), F10(]yyyv),
F12(]xxxyv), F14(]xyyyv), F16(v]xv), F17(v]yv), and
F18(]xv]yv). We choose this ansatz as a compromise
tween generality and computational effort. Comparing E
~7! with Eq. ~8!, one expects, in particular, the following fo
the solution of Eq.~6!: Up to an arbitrary common factor,F0
should be the identity,F1 should be a polynomial of third
order, and fori 54,6,11,13,15 theF i should be linear func-
tions a iOi . All other estimates should vanish. Furthermo
we expect for the slopes of the linear functions, after divis
by the slope of the left-hand side to remove the arbitr
common factor,a45a65a13522, a115a15521.

Performing the ACE algorithm, we find a maximal corr
lation of 0.9993 and optimal transformations as shown
Fig. 2. All functions approximate well the expected sha
and the terms that were expected to vanish are indeed
small compared to the other ones. Note that this does
mean that the values for the redundant terms are vanis
themselves but that these are independent of all the o
terms involved. Comparison of the slope of the linear fun
tions yields the possibility of estimating parameters; we
tain a45a6521.9, a13522.0, anda115a15521.0. The
slopes of the terms that are expected to vanish are all sm
than 0.03 in absolute value. Since it is difficult to estima

FIG. 2. Four exemplary estimates for the optimal transform
tions (F0, F4, F5, F16) are shown. The linear occurrence of] tu
and ]xxu is clearly recovered byF0 and F4, respectively. The
redundant terms]xyu and u]xu vanish approximately. The dotte
lines mark the interval on the abscissa in which 98% of the d
points are located. Due to a very nonhomogeneous distributio
the data the optimal transformations outside the marked inte
cannot be estimated reliably. The results for the optimal trans
mations not shown here deliver estimates of equal quality. As
Fig. 1, units are dimensionless.
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the errors of these values, it is advisable to check the ra
of validity of the reconstructed model by integration a
comparison with the dynamics. In Fig. 3 the nonlinearit
20.9u2u3 of Eq. ~7! is compared explicitly with the esti
mate, taking now an ansatz with only the nonvanishing ter
of the above result. Inside a range of 98% of the data val
this term can be estimated with high accuracy.

From a practical point of view, it is essential to discu
the stability of the identification method against noise. T
effect of noise is to increase the errors of the estimates
the partial differential operators applied to the data, a
therefore also the value of the error estimatee2. The identi-
fication detects the remaining correlations of the vector fi
and its derivatives via the functionF. In general, if the vec-
tor field and its derivatives are still strongly correlated for
reasonable low noise level of a noisy system, the minim
according to Eq.~5! should still be detectable.

To examine the stability against noise, we disturb ea

data pointv(xW ,t) with additive Gaussian white noise with
standard deviation of 0.5% of the data standard deviat
The estimates of the partial derivatives are disturbed seve
due to error propagation. In spite of this, using again Eq.~8!,
the overall shape of all functions can still be recovered s
isfactorily, while being distorted~Fig. 3!. The maximal cor-
relation has decreased to 0.926.

Two other systems, which were analyzed with simi
success as the example above, are~1! the Kuramoto-
Sivashinsky equation~in the form given in Ref.@2#! in the
fully chaotic regime and~2! a reaction-diffusion system with
two components@12#, where the nonlinearity in the inhibito
dynamics is a nonanalytic function. We reconstructed t
function with high accuracy for different states, such
single rotating spiral and spiral-defect chaos.

Summarizing our experiences, we find the following da
requirements.~1! In order to identify a system withN com-
ponents it is sufficient to measureN independent variables
~2! The sampling of the vector fields in space as well as
time has to be appropriate to properly estimate the pa
derivatives with respect to time and space.~3! In the preced-
ing example we analyzed data at one time point but for
extended region in space. In other situations it may be us
to perform the analysis at a single spatial point but fo
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ta
of
al
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n

FIG. 3. The nonlinear term of the Swift-Hohenberg equation~7!.
~a! The estimated and the exact nonlinearity20.9u2u3. ~b! The
same with noise, as explained in the text. Units are dimensionl
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57 2823IDENTIFICATION OF CONTINUOUS, . . .
longer interval in time, or even a combination of bothproc
dures. However, as the example shows, even a small am
of data can be sufficient.~4! Since the reconstructed func
tions can only be determined at points that are attained by
data and the estimates for the differential operators, the
have to show a sufficient variability in space and time.~5!
The inference from the data to a PDE is often not uniq
But within the errors of the algorithm, our method reaso
ably reconstructs the dynamics on the trajectory given by
data.~6! We believe that due to the statistical nature of t
method a higher noise level can typically be compensated
a larger data set.

We would like to stress the fact that the procedure p
sented above is essentially independent of the part of p
space the system moves on and the boundary and initial
ditions. Thus we do not require the dynamics to be close
or away from an attractor. This kind of analysis is thus a
plicable in the case of high-dimensional chaotic motion,
exhibited by nonlinear spatially extended systems, as we
transient motion. We did not discuss nonhomogeneous
nonautonomous evolution laws, but, in principle, the arg
ce
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ments apply equally well, with some minor modification
for those systems.

In conclusion, we presented a method for the identifi
tion of spatiotemporal systems by numerical reconstruct
of the PDE which describes the system. The identificat
procedure consists in solving an optimization problem wh
results in a nonlinear regression problem. Using the A
algorithm, we showed that this task can indeed be solve
the case of numerical examples. We consider the metho
useful tool for the analysis of spatiotemporal systems a
expect it to find a large variety of applications. The limits
this method and the requirements on the data have been
cussed. Future work will concentrate on an extension of
ACE algorithm to the solution of multicomponent problem
and on the application to real data. Extensions to more g
eral systems are envisaged.
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